Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Amino-3-nitropyridinium hydrogen selenate

Samah Akriche* and Mohamed Rzaigui

Laboratoire de chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia Correspondence e-mail: samah.akriche@fsb.rnu.tn

Received 14 May 2009; accepted 14 June 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.047; wR factor = 0.112; data-to-parameter ratio = 16.2.

The asymmetric unit of the title compound, $C_5H_6N_3O_2^+$. HSeO₄⁻, contains two monoprotonated 2-amino-3-nitropyridinium cations and two hydrogen selenate anions which are connected through $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds, building chains parallel to the *a* direction. These chains are further connected to each other by weaker $C-H \cdots O$ hydrogen-bonding interactions, leading to the formation of a three-dimensional network.

Related literature

For related structures, see: Akriche et al. (2009); Fleck (2006); Le Fur, Masse & Nicoud (1998); Nicoud et al. (1997); Maalej et al. (2008).

Experimental

Crystal data

C₅H₆N₃O₂⁺·HSeO₄⁻ $M = 284\,10$ Monoclinic, $P2_1/c$ a = 9.090 (3) Å b = 20.130 (2) Å c = 10.434 (4) Å $\beta = 104.84 \ (2)^{\circ}$

Data collection

Enraf-Nonius Turbo-CAD-4 diffractometer Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.145, \ T_{\max} = 0.298$ (expected range = 0.224 - 0.460)7325 measured reflections

 $V = 1845.6 (10) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 4.09 \text{ mm}^-$ T = 298 K $0.37 \times 0.29 \times 0.19 \ \text{mm}$

4433 independent reflections 2980 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$ 2 standard reflections frequency: 120 min intensity decay: 4%

$R[F^2 > 2\sigma(F^2)] = 0.047$	274 parameters
$wR(F^2) = 0.112$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.80 \ {\rm e} \ {\rm \AA}^{-3}$
4433 reflections	$\Delta \rho_{\rm min} = -0.75 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond	geometry (A	Ă, °).
---------------	-------------	--------

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1…O6	0.82	1.75	2.565 (5)	170
$O5-H5\cdots O2^{i}$	0.82	1.80	2.601 (5)	167
$N1 - H1A \cdots O4$	0.86	1.84	2.679 (5)	166
$N2-H2A\cdots O3$	0.86	2.02	2.870 (6)	172
$N2 - H2B \cdot \cdot \cdot O9$	0.86	2.09	2.675 (6)	124
$N2-H2B\cdots O8^{ii}$	0.86	2.28	2.933 (5)	133
N4-H4···O7	0.86	2.05	2.864 (5)	157
$N5-H5A\cdots O8$	0.86	2.07	2.900 (5)	163
$N5-H5B\cdots O3^{ii}$	0.86	2.11	2.798 (5)	137
$N5-H5B\cdots O11$	0.86	2.12	2.693 (5)	124
C3−H3···O5 ⁱⁱⁱ	0.93	2.54	3.443 (5)	163
$C4 - H4A \cdots O12^{iv}$	0.93	2.47	3.290 (6)	148
C8−H8···O6 ⁱⁱⁱ	0.93	2.57	3.463 (6)	162
$C10-H10\cdots O4^{v}$	0.93	2.35	3.228 (6)	158

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z; (iii) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x, -y + \frac{1}{2}, z + \frac{1}{2}; (v) - x + 2, -y + 1, -z + 1.$

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2458).

References

- Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, 0793.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fleck, M. (2006). Acta Cryst. E62, 04939-04941.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Le Fur, Y., Masse, R. & Nicoud, J. F. (1998). New J. Chem. pp. 159-163.
- Maalej, W., Elaoud, Z., Mhiri, T., Daoud, A. & Driss, A. (2008). Acta Cryst. E64, o2172
- Nicoud, J. F., Masse, R., Bourgogne, C. & Evans, C. (1997). J. Mater. Chem. 7, 35-39
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o1648 [doi:10.1107/S1600536809022879]

2-Amino-3-nitropyridinium hydrogen selenate

S. Akriche and M. Rzaigui

Comment

The important advantage of hybrid organic inorganic salts is the opportunity offered by the chromophores that when anchored onto inorganic host matrices, lead to non-centrosymmetric frameworks suitable for NLO devices. The approach of this new engineering has been applied to 2-amino-3-nitropyridinium cation (2 A3NP^+) encapsulated in various anionic subnetworks (Akriche *et al.*, 2009, Nicoud *et al.*,1997, Le Fur *et al.*, 1998). The attempt using (HSO₄⁻) _n polymeric anions has been successful with the cristallization of the non-centrosymmetric 2-Amino-3-nitropyridinium sulfate (Le Fur *et al.*, 1998). The encapsulation of this cation in (HSeO₄⁻)_n polymeric anions leads to the title compound (I).

The asymmetric unit of (I) contains two monoprotonated 2-amino-3-nitropyridinium cations and two hydrogen selenate anions (Fig.1) which are connected through N—H···O, C—H···O and O—H···O hydrogen bonds. The hydrogen selenate anions are interconnected between themselves by H-bonds involving the proton of selenate groups leading to (HSeO₄⁻) n chains parallel to the *a* axis (Fig. 2).

In this atomic arrangement the HSeO₄⁻ tetraedra are slightly distorted with Se—O distances from 1.594 (6) to 1.713 (4) Å. The Se—O bonds in selenate tetrahedra depends greatly on the nature of the O atoms acting as an acceptor or a donor atoms: the longer bonds (1.713 (4) and 1.692 (5) Å) involve oxygen atoms acting as a H-donor whereas shorter bonds ranging from 1.594 (6) to 1.623 (4) relate to oxygen atoms acting as H-acceptor participating in hydrogen bonds of type N—H…O and C—H…O. As expected, the geometrical features of anion agree with those previously observed for this group in other analogues (Fleck, 2006, Maalej *et al.*, 2008).

The 2-amino-3-nitropyridinium cations are onchored onto anionic chains through short hydrogen bonds originating from the NH₂ and NH⁺ groups. The unique inter-cation contact C4—H4A···O11(H4A···O11 = 2.45 Å) induces the aggregation of cations in pairs (2 A3NP⁺)₂ elongated in -(a+c) direction. Two hydrogen bonds, N2—H2B···O10 (2.10 Å) and N5—H5B···O12 (2.11 Å) (see Table 1) ensure the intra-cation links. This situation is well observed in nitroaniline derivatives in which nitro and amino groups are *ortho* to one another which precludes the rotation of the nitro group with respect to the pyridinium rings. The diedral angles between the planes of the NO₂ groups and the two pyridinium planes are 19.0 (3) and 15.9 (4) % indicating a distortion of the NO₂ groups under the influence of C—H···O hydrogn bonds of neighbouring cations. This situation is alawys observed in other 2-amino-3-nitropyridinium salts (Nicoud *et al.*,1997, Le Fur *et al.*, 1998). The bond lengths and angles in (I) are normal and comparable with the corresponding values observed in the related structure (Akriche *et al.*, 2009, Nicoud *et al.*,1997, Le Fur *et al.*, 1998).

Experimental

The title compound (I) was cristallized by slow evaporation at room temperature of an aqueous solution (20 ml) of 2-amino-3-nitropyridine (4 mmol) and selenic acid (4 mmol) in a 1:1 stochiometric ratio.

Refinement

All H atoms attached to C, N and H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å, N—H = 0.86Å and O—H = 0.82 Å with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$ and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. An *ORTEP* view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines.

Fig. 2. A perspective view of (I) showing the (HSeO₄) $_{n}$ polymeric anions running along the *a* axis. The C—H···O bonds are omitted for clarity of figure.

2-Amino-3-nitropyridinium hydrogen selenate

Crystal data

C₅H₆N₃O₂⁺·HO₄Se⁻ $F_{000} = 1120$ $M_r = 284.10$ $D_{\rm x} = 2.045 {\rm Mg m}^{-3}$ Monoclinic, $P2_1/c$ Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: -P 2ybc Cell parameters from 25 reflections a = 9.090(3) Å $\theta = 9 - 11^{\circ}$ *b* = 20.130 (2) Å $\mu = 4.09 \text{ mm}^{-1}$ c = 10.434 (4) Å T = 298 K $\beta = 104.84 \ (2)^{\circ}$ Prism, yellow $0.37 \times 0.29 \times 0.19 \text{ mm}$ $V = 1845.6 (10) \text{ Å}^3$ Z = 8

Data collection

Enraf–Nonius Turbo-CAD-4 diffractometer	$R_{\rm int} = 0.040$
Radiation source: fine-focus sealed tube	$\theta_{max} = 28.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.0^{\circ}$
T = 298 K	$h = -11 \rightarrow 11$
ω scans	$k = 0 \rightarrow 26$

Absorption correction: multi-scan (Blessing, 1995) $T_{min} = 0.145$, $T_{max} = 0.298$ 7325 measured reflections 4433 independent reflections 2980 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0549P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.112$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.80 \text{ e } \text{\AA}^{-3}$
4433 reflections	$\Delta \rho_{\rm min} = -0.75 \ \text{e} \ \text{\AA}^{-3}$
274 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

 $l = -6 \rightarrow 13$

every 120 min

2 standard reflections

intensity decay: 4%

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0106 (7)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Se1	0.39573 (5)	0.57437 (2)	0.26743 (5)	0.03205 (15)
Se2	0.88010 (5)	0.61095 (2)	0.28019 (5)	0.02924 (14)
O1	0.4598 (4)	0.65134 (18)	0.2463 (5)	0.0680 (13)
H1	0.5519	0.6530	0.2786	0.102*
O3	0.3344 (5)	0.5426 (2)	0.1228 (4)	0.0756 (14)
O2	0.2627 (4)	0.58545 (19)	0.3409 (4)	0.0576 (11)
O4	0.5374 (4)	0.53198 (15)	0.3555 (3)	0.0411 (8)
O5	1.0304 (3)	0.66505 (15)	0.3064 (4)	0.0401 (8)
Н5	1.1091	0.6443	0.3109	0.060*
O6	0.7514 (3)	0.65653 (16)	0.3186 (4)	0.0433 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

O7	0.9371 (4)	0.54843 (15)	0.3783 (3)	0.0405 (8)
08	0.8397 (4)	0.58792 (17)	0.1281 (3)	0.0478 (9)
09	0.4200 (5)	0.2899 (2)	-0.0205 (4)	0.0656 (12)
O10	0.6241 (5)	0.23103 (19)	0.0156 (4)	0.0672 (12)
O11	0.8828 (4)	0.33319 (18)	-0.0323 (4)	0.0498 (9)
O12	1.0837 (4)	0.27232 (16)	-0.0052 (4)	0.0503 (9)
N1	0.6363 (4)	0.41805 (19)	0.2743 (4)	0.0361 (9)
H1A	0.6010	0.4565	0.2869	0.043*
N2	0.4378 (4)	0.4105 (2)	0.0899 (4)	0.0442 (10)
H2A	0.4098	0.4494	0.1082	0.053*
H2B	0.3862	0.3897	0.0211	0.053*
N3	0.5509 (5)	0.2774 (2)	0.0413 (5)	0.0454 (10)
N4	1.1029 (4)	0.44386 (17)	0.2922 (4)	0.0333 (9)
H4	1.0723	0.4821	0.3116	0.040*
N5	0.9152 (4)	0.4497 (2)	0.0988 (4)	0.0413 (10)
H5A	0.8914	0.4881	0.1236	0.050*
H5B	0.8653	0.4335	0.0241	0.050*
N6	1.0111 (5)	0.31667 (18)	0.0290 (4)	0.0348 (9)
C1	0.5601 (5)	0.3828 (2)	0.1677 (5)	0.0337 (10)
C2	0.6231 (5)	0.3199 (2)	0.1535 (5)	0.0339 (10)
C3	0.7524 (5)	0.2982 (2)	0.2424 (5)	0.0400 (12)
Н3	0.7922	0.2568	0.2303	0.048*
C4	0.8245 (5)	0.3366 (3)	0.3493 (5)	0.0427 (12)
H4A	0.9114	0.3214	0.4103	0.051*
C5	0.7647 (5)	0.3970 (2)	0.3629 (5)	0.0381 (11)
H5C	0.8120	0.4243	0.4333	0.046*
C6	1.0279 (5)	0.4158 (2)	0.1752 (4)	0.0288 (9)
C7	1.0836 (5)	0.3528 (2)	0.1496 (4)	0.0286 (9)
C8	1.2031 (5)	0.3237 (2)	0.2393 (5)	0.0387 (11)
H8	1.2366	0.2819	0.2216	0.046*
C9	1.2739 (6)	0.3557 (3)	0.3550 (5)	0.0443 (12)
H9	1.3562	0.3363	0.4150	0.053*
C10	1.2217 (5)	0.4159 (2)	0.3799 (5)	0.0402 (11)
H10	1.2680	0.4382	0.4580	0.048*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Se1	0.0214 (2)	0.0312 (2)	0.0401 (3)	0.00508 (17)	0.00162 (18)	-0.0022 (2)
Se2	0.0249 (2)	0.0232 (2)	0.0358 (3)	-0.00061 (17)	0.00088 (18)	-0.00011 (18)
O1	0.0320 (19)	0.040 (2)	0.129 (4)	0.0059 (17)	0.015 (2)	0.030 (2)
O3	0.079 (3)	0.075 (3)	0.049 (3)	0.045 (2)	-0.026 (2)	-0.021 (2)
O2	0.040 (2)	0.055 (2)	0.088 (3)	0.0112 (18)	0.034 (2)	0.009 (2)
O4	0.0365 (17)	0.0333 (17)	0.045 (2)	0.0110 (14)	-0.0050 (15)	-0.0029 (15)
O5	0.0281 (16)	0.0327 (17)	0.057 (2)	-0.0049 (13)	0.0061 (16)	-0.0020 (16)
O6	0.0299 (17)	0.0338 (17)	0.066 (2)	0.0023 (14)	0.0125 (16)	-0.0058 (17)
O7	0.0416 (18)	0.0311 (16)	0.048 (2)	0.0056 (14)	0.0099 (16)	0.0142 (15)
O8	0.055 (2)	0.0375 (18)	0.041 (2)	0.0050 (17)	-0.0043 (17)	-0.0050 (16)

09	0.054 (2)	0.061 (3)	0.071 (3)	-0.007 (2)	-0.004 (2)	-0.023 (2)
O10	0.084 (3)	0.046 (2)	0.074 (3)	0.004 (2)	0.026 (2)	-0.023 (2)
011	0.0348 (18)	0.057 (2)	0.050(2)	-0.0048 (17)	-0.0036 (17)	-0.0155 (18)
012	0.066 (2)	0.0294 (18)	0.057 (2)	0.0063 (17)	0.018 (2)	-0.0091 (16)
N1	0.037 (2)	0.031 (2)	0.038 (2)	0.0060 (17)	0.0050 (18)	-0.0043 (18)
N2	0.039 (2)	0.041 (2)	0.046 (3)	0.0080 (19)	0.000 (2)	-0.004 (2)
N3	0.055 (3)	0.029 (2)	0.055 (3)	-0.006 (2)	0.019 (2)	-0.0050 (19)
N4	0.039 (2)	0.0234 (17)	0.032 (2)	0.0039 (16)	-0.0007 (17)	-0.0015 (15)
N5	0.046 (2)	0.036 (2)	0.033 (2)	0.0113 (18)	-0.0072 (19)	-0.0061 (17)
N6	0.043 (2)	0.0291 (19)	0.034 (2)	-0.0076 (17)	0.0117 (19)	-0.0040 (16)
C1	0.033 (2)	0.032 (2)	0.037 (3)	0.0022 (19)	0.010 (2)	0.003 (2)
C2	0.034 (2)	0.031 (2)	0.038 (3)	-0.0001 (19)	0.012 (2)	0.000 (2)
C3	0.042 (3)	0.027 (2)	0.055 (3)	0.008 (2)	0.020 (2)	0.007 (2)
C4	0.037 (3)	0.047 (3)	0.042 (3)	0.009 (2)	0.005 (2)	0.014 (2)
C5	0.035 (2)	0.041 (3)	0.035 (3)	0.002 (2)	0.003 (2)	-0.001 (2)
C6	0.032 (2)	0.029 (2)	0.023 (2)	-0.0036 (18)	0.0041 (19)	0.0005 (18)
C7	0.035 (2)	0.023 (2)	0.029 (2)	-0.0039 (17)	0.0094 (19)	-0.0007 (18)
C8	0.043 (3)	0.027 (2)	0.047 (3)	0.006 (2)	0.012 (2)	0.005 (2)
С9	0.041 (3)	0.045 (3)	0.038 (3)	0.013 (2)	-0.005 (2)	0.005 (2)
C10	0.044 (3)	0.038 (3)	0.031 (3)	-0.003 (2)	-0.005 (2)	0.000(2)

Geometric parameters (Å, °)

Se1—O3	1.602 (4)	N4—C10	1.347 (5)
Se1—O2	1.604 (3)	N4—C6	1.359 (5)
Se1—O4	1.620 (3)	N4—H4	0.8600
Se1—O1	1.689 (4)	N5—C6	1.316 (5)
Se2—O8	1.603 (3)	N5—H5A	0.8600
Se2—O6	1.616 (3)	N5—H5B	0.8600
Se2—O7	1.621 (3)	N6—C7	1.456 (5)
Se2—O5	1.713 (3)	C1—C2	1.412 (6)
O1—H1	0.8200	C2—C3	1.369 (7)
O5—H5	0.8200	C3—C4	1.377 (7)
O9—N3	1.225 (5)	С3—Н3	0.9300
O10—N3	1.216 (5)	C4—C5	1.355 (7)
O11—N6	1.224 (5)	C4—H4A	0.9300
O12—N6	1.217 (5)	C5—H5C	0.9300
N1—C1	1.352 (6)	C6—C7	1.417 (6)
N1—C5	1.357 (6)	С7—С8	1.370 (6)
N1—H1A	0.8600	C8—C9	1.374 (7)
N2—C1	1.321 (6)	С8—Н8	0.9300
N2—H2A	0.8600	C9—C10	1.351 (7)
N2—H2B	0.8600	С9—Н9	0.9300
N3—C2	1.463 (6)	C10—H10	0.9300
O3—Se1—O2	112.5 (2)	O11—N6—C7	118.4 (4)
O3—Se1—O4	111.03 (18)	N2-C1-N1	117.2 (4)
O2—Se1—O4	112.89 (19)	N2-C1-C2	127.9 (5)
O3—Se1—O1	106.9 (3)	N1—C1—C2	114.9 (4)
O2—Se1—O1	105.2 (2)	C3—C2—C1	121.1 (4)

O4—Se1—O1	107.86 (17)	C3—C2—N3	119.1 (4)
O8—Se2—O6	114.36 (18)	C1—C2—N3	119.8 (4)
O8—Se2—O7	110.84 (17)	C2—C3—C4	121.1 (4)
O6—Se2—O7	114.76 (17)	С2—С3—Н3	119.4
O8—Se2—O5	108.25 (19)	С4—С3—Н3	119.4
O6—Se2—O5	101.41 (16)	C5—C4—C3	117.9 (4)
O7—Se2—O5	106.24 (17)	C5—C4—H4A	121.0
Se1—O1—H1	109.5	C3—C4—H4A	121.0
Se2—O5—H5	109.5	C4—C5—N1	120.4 (5)
C1—N1—C5	124.5 (4)	C4—C5—H5C	119.8
C1—N1—H1A	117.7	N1—C5—H5C	119.8
C5—N1—H1A	117.7	N5C6N4	117.6 (4)
C1—N2—H2A	120.0	N5—C6—C7	127.6 (4)
C1—N2—H2B	120.0	N4—C6—C7	114.8 (4)
H2A—N2—H2B	120.0	C8—C7—C6	120.8 (4)
O10—N3—O9	123.6 (5)	C8—C7—N6	118.7 (4)
O10—N3—C2	117.8 (4)	C6—C7—N6	120.4 (4)
O9—N3—C2	118.6 (4)	С7—С8—С9	120.8 (4)
C10—N4—C6	124.6 (4)	С7—С8—Н8	119.6
C10—N4—H4	117.7	С9—С8—Н8	119.6
C6—N4—H4	117.7	C10—C9—C8	118.7 (4)
C6—N5—H5A	120.0	С10—С9—Н9	120.6
C6—N5—H5B	120.0	С8—С9—Н9	120.6
H5A—N5—H5B	120.0	N4—C10—C9	120.3 (4)
O12—N6—O11	124.2 (4)	N4—C10—H10	119.9
O12—N6—C7	117.5 (4)	С9—С10—Н10	119.9

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A		
O1—H1…O6	0.82	1.75	2.565 (5)	170		
O5—H5···O2 ⁱ	0.82	1.80	2.601 (5)	167		
N1—H1A···O4	0.86	1.84	2.679 (5)	166		
N2—H2A···O3	0.86	2.02	2.870 (6)	172		
N2—H2B…O9	0.86	2.09	2.675 (6)	124		
N2—H2B···O8 ⁱⁱ	0.86	2.28	2.933 (5)	133		
N4—H4…O7	0.86	2.05	2.864 (5)	157		
N5—H5A…O8	0.86	2.07	2.900 (5)	163		
N5—H5B···O3 ⁱⁱ	0.86	2.11	2.798 (5)	137		
N5—H5B…O11	0.86	2.12	2.693 (5)	124		
C3—H3···O5 ⁱⁱⁱ	0.93	2.54	3.443 (5)	163		
C4—H4A···O12 ^{iv}	0.93	2.47	3.290 (6)	148		
C8—H8···O6 ⁱⁱⁱ	0.93	2.57	3.463 (6)	162		
C10—H10…O4 ^v	0.93	2.35	3.228 (6)	158		
Symmetry codes: (i) $x+1$, y , z ; (ii) $-x+1$, $-y+1$, $-z$; (iii) $-x+2$, $y-1/2$, $-z+1/2$; (iv) x , $-y+1/2$, $z+1/2$; (v) $-x+2$, $-y+1$, $-z+1$.						

Fig. 1

